DISCRETE RANDOM VARIABLES

DEFINITION: A discrete random variable is a function $X(s)$ from a finite or countably infinite sample space S to the real numbers :

 $X(\cdot)$: $S \rightarrow \mathbb{R}$.

EXAMPLE : Toss ^a coin 3 times in sequence. The sample space is

 $\mathcal{S} \,\,=\,\, \left\{\textit{HHH}\,,\,\textit{HHT}\,,\,\textit{HTH}\,,\,\textit{HTT}\,,\,\textit{THH}\,,\,\textit{THT}\,,\,\textit{TTH}\,,\,\textit{TTT}\right\},$ and examples of random variables are

• $X(s) =$ the number of Heads in the sequence; e.g., $X(HTH) = 2$,

• $Y(s)$ = The index of the first H; e.g., $Y(TTH) = 3$, 0 if the sequence has no H , *i.e.*, $Y(TTT) = 0$.

NOTE: In this example $X(s)$ and $Y(s)$ are actually *integers*.

Value-ranges of a random variable correspond to *events* in S .

EXAMPLE : For the sample space

 $\mathcal{S} \,\,=\,\, \{HHH\, ,\, HHT\, ,\, HTH\, ,\, HTT\, ,\, THH\, ,\, THT\, ,\, TTH\, ,\, TTT\} \, ,$ with

$$
X(s) =
$$
 the number of Heads,

the value

 $X(s) = 2$, corresponds to the event $\{HHT, HTH, THH\}$, and the values

 $1 < X(s) \leq 3$, correspond to $\{HHH, HHT, HTH, THH\}$.

NOTATION: If it is clear what S is then we often just write X instead of $X(s)$.

Value-ranges of a random variable correspond to events in S , and

events in S have a probability.

Thus

Value-ranges of ^a random variable have ^a probability .

EXAMPLE : For the sample space

 $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\},$

with $X(s) =$ the number of Heads,

we have

$$
P(0 < X \le 2) = \frac{6}{8} \, .
$$

QUESTION : What are the values of $P(X \le -1)$, $P(X \le 0)$, $P(X \le 1)$, $P(X \le 2)$, $P(X \le 3)$, $P(X \le 4)$? **NOTATION**: We will also write $p_X(x)$ to denote $P(X = x)$. EXAMPLE : For the sample space

 $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\},$ with

 $X(s) =$ the number of Heads,

we have

$$
p_X(0) \equiv P(\{TTT\}) \qquad \qquad = \frac{1}{8}
$$

$$
p_X(1) \equiv P({\{HTT, THT, TTH\}}) = \frac{3}{8}
$$

$$
p_X(2) \equiv P({HHT, HTH, THH}) = \frac{3}{8}
$$

$$
p_X(3) \equiv P(\{HHH\}) \qquad = \frac{1}{8}
$$

where

$$
p_X(0) + p_X(1) + p_X(2) + p_X(3) = 1.
$$
 (Why?)

Graphical representation of X .

The events E_0, E_1, E_2, E_3 are disjoint since $X(s)$ is a function! $(X : S \to \mathbb{R}$ must be defined for all $s \in S$ and must be *single-valued*.)

The graph of p_X .

DEFINITION :

$$
p_X(x) \equiv P(X = x) ,
$$

is called the probability mass function .

DEFINITION :

$$
F_X(x) \equiv P(X \le x) ,
$$

is called the (cumulative) probability distribution function .

PROPERTIES :

- $F_X(x)$ is a non-decreasing function of x. (Why?)
- $F_X(-\infty) = 0$ and $F_X(\infty) = 1$. (Why?)
- $P(a < X \le b) = F_X(b) F_X(a)$. (Why?)

NOTATION: When it is clear what X is then we also write

 $p(x)$ for $p_X(x)$ and $F(x)$ for $F_X(x)$.

EXAMPLE: With $X(s) =$ the number of Heads, and $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\},$ $p(0) = \frac{1}{8}$, $p(1) = \frac{3}{8}$, $p(2) = \frac{3}{8}$, $p(3) = \frac{1}{8}$,

we have the probability distribution function

We see, for example, that

$$
P(0 < X \le 2) = P(X = 1) + P(X = 2)
$$

= $F(2) - F(0) = \frac{7}{8} - \frac{1}{8} = \frac{6}{8}.$

The graph of the *probability distribution function* F_X .

EXAMPLE : Toss a coin until "Heads" occurs.

Then the sample space is *countably infinite*, namely,

$$
S = \{H , TH , TTH , TTH , TTTH , \cdots \}.
$$

The *random variable* X is the *number of rolls* until "Heads" occurs :

 $X(H) = 1$, $X(TH) = 2$, $X(TTH) = 3$, ... Then

and
$$
p(1) = \frac{1}{2}
$$
, $p(2) = \frac{1}{4}$, $p(3) = \frac{1}{8}$, \cdots (Why?)
\n $F(n) = P(X \le n) = \sum_{k=1}^{n} p(k) = \sum_{k=1}^{n} \frac{1}{2^k} = 1 - \frac{1}{2^n}$,
\nand, as should be the case,

$$
\sum_{k=1}^{\infty} p(k) = \lim_{n \to \infty} \sum_{k=1}^{n} p(k) = \lim_{n \to \infty} (1 - \frac{1}{2^n}) = 1.
$$

NOTE: The outcomes in S do not have equal probability! EXERCISE : Draw the probability mass and distribution functions. $X(s)$ is the *number of tosses* until "Heads" occurs \cdots

REMARK : We can also take $S \equiv S_n$ as all ordered outcomes of length n. For example, for $n = 4$,

 \mathcal{S}_4 = { $\tilde{H} H H H$, $\tilde{H} H H T$, $\tilde{H} H T H$, $\tilde{H} H T T$, $\tilde{H}THH$, $\tilde{H}THT$, $\tilde{H}TTH$, $\tilde{H}TTT$, $T\tilde{H}HH\;,\quad T\tilde{H}HT\;,\quad T\tilde{H}TH\;,\quad T\tilde{H}TT\;,\nonumber$ $TT\tilde{H}H$, $TT\tilde{H}T$, $TTT\tilde{H}$, $TTTT$ }.

where for each outcome the first "Heads" is marked as H .

Each outcome in \mathcal{S}_4 has equal probability 2^{-n} (here $2^{-4} = \frac{1}{16}$), and $p_X(1) = \frac{1}{2}$, $p_X(2) = \frac{1}{4}$, $p_X(3) = \frac{1}{8}$, $p_X(4) = \frac{1}{16}$... independent of n .

Joint distributions

The probability mass function and the probability distribution function can also be functions of more than one variable.

EXAMPLE : Toss ^a coin 3 times in sequence. For the sample space

 $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\},$ we let

 $X(s) = # \text{Heads}$, $Y(s) = \text{index of the first } H$ (0 for TTT). Then we have the *joint probability mass function*

$$
p_{X,Y}(x,y) = P(X = x , Y = y) .
$$

For example,

$$
p_{X,Y}(2,1) = P(X = 2, Y = 1)
$$

= $P(2 \text{Heads}, 1^{\text{st} \text{toss is Heads}})$
= $\frac{2}{8} = \frac{1}{4}$.

$$

 $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\},$ $X(s)$ = number of Heads, and $Y(s)$ = index of the first H, we can list the values of $p_{X,Y}(x, y)$:

NOTE :

• The marginal probability p_X is the probability mass function of X.

• The marginal probability p_Y is the probability mass function of Y.

$\mathbf{EXAMPLE:} \left(\text{ continued} \cdots \right)$

 $X(s)$ = number of Heads, and $Y(s)$ = index of the first H.

For example,

- $X = 2$ corresponds to the *event* $\{HHT, HTH, THH\}$.
- $Y = 1$ corresponds to the *event* $\{HHH, HHT, HTH, HTT\}$.
- $(X = 2 \text{ and } Y = 1)$ corresponds to the *event* $\{HHT, HTH\}$.

QUESTION: Are the events $X = 2$ and $Y = 1$ *independent*?

The events $E_{i,j} \equiv \{ s \in S : X(s) = i , Y(s) = j \}$ are disjoint. **QUESTION** : Are the events $X = 2$ and $Y = 1$ *independent*?

DEFINITION :

$$
p_{X,Y}(x,y) \equiv P(X=x \ , \ Y=y) \ ,
$$

is called the joint probability mass function .

DEFINITION :

$$
F_{X,Y}(x,y) \equiv P(X \le x , Y \le y) ,
$$

is called the joint (cumulative) probability distribution function .

NOTATION : When it is clear what X and Y are then we also write

and
$$
p(x, y)
$$
 for $p_{X,Y}(x, y)$,
 $F(x, y)$ for $F_{X,Y}(x, y)$.

EXAMPLE : Three tosses : $X(s) = \#$ Heads, $Y(s) = \text{index } 1^{st}$ H.

<i>Joint probability mass function</i> $p_{X,Y}(x, y)$					
	$y=0$			$y = 1$ $y = 2$ $y = 3$	$p_X(x)$
$x=0$					
$x=1$					
$x=2$					
$x=3$					

Joint distribution function $F_{X,Y}(x, y) \equiv P(X \leq x, Y \leq y)$

Note that the distribution function F_X is a *copy* of the 4th column, and the distribution function F_Y is a *copy* of the 4th row. (Why ?)

In the preceding example :

Joint probability mass function $p_{X,Y}(x, y)$					
	$y=0$			$y = 1 y = 2 y = 3 $	\mathcal{X} $\mathcal{D}X$
$x=0$					
$x=1$					
$x=2$					
$x=3$					

Joint distribution function $F_{X,Y}(x, y) \equiv P(X \leq x, Y \leq y)$

QUESTION : Why is $P(1 < X \leq 3, 1 < Y \leq 3) = F(3,3) - F(1,3) - F(3,1) + F(1,1)$?

EXERCISE :

Roll ^a four-sided die (tetrahedron) two times.

(The sides are marked ¹ , ² , ³ , ⁴ .)

Suppose each of the four sides is equally likely to end facing down.

Suppose the *outcome* of a *single roll* is the side that faces *down* (!).

Define the random variables X and Y as

 $X = \text{result of the first roll}$, $Y = \text{sum of the two rolls.}$

- What is a good choice of the *sample space* S ?
- How many outcomes are there in S ?
- List the values of the *joint probability mass function* $p_{X,Y}(x, y)$.
- List the values of the *joint cumulative distribution function* $F_{X,Y}(x, y)$.

EXERCISE :

Three balls are selected at random from ^a bag containing

2 *red*, 3 *green*, 4 *blue* balls.

Define the random variables

 $R(s) =$ the number of red balls drawn,

 $G(s) =$ the number of green balls drawn.

List the values of

and

- the joint probability mass function $p_{R,G}(r, g)$.
- the marginal probability mass functions $p_R(r)$ and $p_G(g)$.
- the joint distribution function $F_{R,G}(r, g)$.
- the marginal distribution functions $F_R(r)$ and $F_G(g)$.

Independent random variables

Two discrete random variables $X(s)$ and $Y(s)$ are *independent* if $P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$, for all x and y,

or, equivalently, if their *probability mass functions* satisfy

$$
p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y) , \text{ for all } x \text{ and } y ,
$$

or, equivalently, if the events

$$
E_x \equiv X^{-1}(\{x\})
$$
 and $E_y \equiv Y^{-1}(\{y\})$,

are independent in the sample space S , i.e.,

$$
P(E_x E_y) = P(E_x) \cdot P(E_y), \text{ for all } x \text{ and } y.
$$

NOTE :

• In the current *discrete* case, x and y are typically *integers*.

•
$$
X^{-1}(\{x\}) \equiv \{ s \in S : X(s) = x \}.
$$

Three tosses : $X(s) = #$ Heads, $Y(s) = \text{index } 1^{st}$ H.

- What are the values of $p_X(2)$, $p_Y(1)$, $p_{X,Y}(2, 1)$?
- Are X and Y independent?

RECALL :

 $X(s)$ and $Y(s)$ are *independent* if for all x and y: $p_{X,Y}(x, y) = p_X(x) \cdot p_Y(y)$.

EXERCISE :

Roll ^a die two times in ^a row.

Let

X be the result of the $1st$ roll, and

 Y the result of the $2nd$ roll.

Are X and Y *independent*, *i.e.*, is

 $p_{X,Y}(k, \ell) = p_X(k) \cdot p_Y(\ell)$, for all $1 \leq k, \ell \leq 6$?

EXERCISE :

Are these random variables X and Y independent?

	$y=0$	$y=1$	$y=2$	$y=3$	$p_X(x)$
$x=0$					
$x=1$					
$x=2$					
$x=3$					

Joint probability mass function $p_{X,Y}(x, y)$

EXERCISE: Are these random variables X and Y independent?

Joint distribution function $F_{X,Y}(x,y) \equiv P(X \leq x, Y \leq y)$

	$2 + 9 + 1$ $y=2$	\rightarrow 0 \prime $y=3$	${F_X}(x)$	
$x =$				
$x=2$	25 $\overline{36}$			
$x=3$				

QUESTION : Is $F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$?

PROPERTY :

The *joint distribution function* of *independent* random variables X and Y satisfies

$$
F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y) , \text{ for all } x, y .
$$

PROOF :

 $F_{X,Y}(x_k, y_\ell) = P(X \leq x_k, Y \leq y_\ell)$ $= \sum_{i\leq k} \sum_{j\leq \ell} p_{X,Y}(x_i,y_j)$ = $\sum_{i\leq k} \sum_{j\leq \ell} p_X(x_i) \cdot p_Y(y_j)$ (by independence) = $\sum_{i \leq k} \{ p_X(x_i) \cdot \sum_{j \leq \ell} p_Y(y_j) \}$ = $\{\sum_{i\leq k} p_X(x_i)\} \cdot \{\sum_{i\leq \ell} p_Y(y_j)\}$ $= F_X(x_k) \cdot F_Y(y_\ell)$.

Conditional distributions

Let X and Y be discrete random variables with joint probability mass function

 $p_{X,Y}(x,y)$.

For given x and y , let

 $E_x = X^{-1}(\{x\})$ and $E_y = Y^{-1}(\{y\})$, be their corresponding events in the sample space $\mathcal{S}.$

Then

$$
P(E_x|E_y) \equiv \frac{P(E_xE_y)}{P(E_y)} = \frac{p_{X,Y}(x,y)}{p_Y(y)}
$$

.

.

Thus it is natural to define the *conditional probability mass function*

$$
p_{X|Y}(x|y) \equiv P(X = x | Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}
$$

• What are the values of $P(X = 2 | Y = 1)$ and $P(Y = 1 | X = 2)$?

EXAMPLE : $(3 \text{ tosses} : X(s) = # \text{Heads}, Y(s) = \text{index } 1^{st} H$.)

Conditional probability mass function $p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$. $y = 0$ | $y = 1$ | $y = 2$ | $y = 3$ $x = 0$ || 1 || 0 || 0 || 0 $x = 1 \tbinom{8}{3} + \frac{2}{8} + \frac{4}{8} + 1$ $x = 2 \parallel 0 \parallel \frac{4}{8} \parallel \frac{4}{8} \parallel 0$ $x = 3 \parallel 0 \parallel \frac{2}{8} \parallel 0 \parallel 0$ 1 1 1 1

EXERCISE : Also construct the Table for $p_{Y|X}(y|x) = \frac{p_{X,Y}(x,y)}{p_{Y}(x)}$.

EXAMPLE :

Joint probability mass function $p_{X,Y}(x, y)$

	\equiv	$=2$ $\overline{\mathcal{U}}$	$y=3$	$p_X(x)$
$x =$	Ω	12	12	
$x=2$		18	18	
$x=3$		$\overline{36}$	$\overline{36}$	

Conditional probability mass function $p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$.

QUESTION : What does the last Table tell us? **EXERCISE**: Also construct the Table for $P(Y = y | X = x)$.

Expectation

The *expected value* of a discrete random variable X is

$$
E[X] = \sum_{k} x_k \cdot P(X = x_k) = \sum_{k} x_k \cdot p_X(x_k).
$$

Thus $E[X]$ represents the *weighted average value* of X. $(E[X]$ is also called the *mean* of X.

EXAMPLE: The *expected value* of *rolling a die* is
\n
$$
E[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \cdots + 6 \cdot \frac{1}{6} = \frac{1}{6} \cdot \sum_{k=1}^{6} k = \frac{7}{2}.
$$

EXERCISE : Prove the following :

• $E[aX] = a E[X],$

•
$$
E[aX + b] = a E[X] + b
$$
.

EXAMPLE : Toss ^a coin until "Heads" occurs. Then

$$
S \;\;=\;\; \left\{ H \;\;,\;\; TH \;\;,\;\; TTH \;\;,\;\; TTTH \;\;,\;\; \;\cdots \;\right\} \,.
$$

The *random variable* X is the *number of tosses* until "Heads" occurs :

$$
X(H) = 1 \quad , \quad X(TH) = 2 \quad , \quad X(TTH) = 3 \; .
$$
 Then

$$
E[X] = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \cdots = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{2^{k}} = 2.
$$

$$
\frac{n \sum_{k=1}^{n} k/2^{k}}{1 \quad 0.50000000}
$$

$$
\frac{2}{3} \begin{vmatrix} 1.00000000 \\ 1.37500000 \\ 1.98828125 \\ 40 \end{vmatrix}
$$

REMARK :

Perhaps using $S_n = \{$ all sequences of *n* tosses $\}$ is better \cdots

The expected value of a *function of a random variable* is

$$
E[g(X)] = \sum_{k} g(x_k) p(x_k).
$$

EXAMPLE :

The *pay-off* of rolling a die is $\&k^2$, where k is the side facing up. What should the *entry fee* be for the betting to break even?

SOLUTION: Here
$$
g(X) = X^2
$$
, and
\n
$$
E[g(X)] = \sum_{k=1}^{6} k^2 \frac{1}{6} = \frac{1}{6} \frac{6(6+1)(2 \cdot 6 + 1)}{6} = \frac{91}{6} \approx $15.17.
$$

The expected value of a function of two random variables is

$$
E[g(X,Y)] = \sum_{k} \sum_{\ell} g(x_k, y_{\ell}) p(x_k, y_{\ell}).
$$

$$
E[X] = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{3} + 3 \cdot \frac{1}{6} = \frac{5}{3},
$$

\n
$$
E[Y] = 1 \cdot \frac{2}{3} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} = \frac{3}{2},
$$

\n
$$
E[XY] = 1 \cdot \frac{1}{3} + 2 \cdot \frac{1}{12} + 3 \cdot \frac{1}{12}
$$

\n
$$
+ 2 \cdot \frac{2}{9} + 4 \cdot \frac{1}{18} + 6 \cdot \frac{1}{18}
$$

\n
$$
+ 3 \cdot \frac{1}{9} + 6 \cdot \frac{1}{36} + 9 \cdot \frac{1}{36} = \frac{5}{2}. (So?)
$$

PROPERTY :

• If X and Y are independent then $E[XY] = E[X] E[Y]$.

PROOF :

$$
E[XY] = \sum_{k} \sum_{\ell} x_{k} y_{\ell} p_{X,Y}(x_{k}, y_{\ell})
$$

\n
$$
= \sum_{k} \sum_{\ell} x_{k} y_{\ell} p_{X}(x_{k}) p_{Y}(y_{\ell}) \qquad \text{(by independence)}
$$

\n
$$
= \sum_{k} \{ x_{k} p_{X}(x_{k}) \sum_{\ell} y_{\ell} p_{Y}(y_{\ell}) \}
$$

\n
$$
= \{ \sum_{k} x_{k} p_{X}(x_{k}) \} \cdot \{ \sum_{\ell} y_{\ell} p_{Y}(y_{\ell}) \}
$$

\n
$$
= E[X] \cdot E[Y].
$$

EXAMPLE : See the preceding example !

 $\mathbf{PROPERTIES}\colon E[X+Y] = E[X] + E[Y] .$ (Always!) PROOF :

$$
E[X + Y] = \sum_{k} \sum_{\ell} (x_k + y_{\ell}) p_{X,Y}(x_k, y_{\ell})
$$

- $= \sum_k \sum_{\ell} x_k p_{X,Y}(x_k, y_{\ell}) + \sum_k \sum_{\ell} y_{\ell} p_{X,Y}(x_k, y_{\ell})$
- $= \sum_k \sum_{\ell} x_k p_{X,Y}(x_k, y_{\ell}) + \sum_{\ell} \sum_k y_{\ell} p_{X,Y}(x_k, y_{\ell})$
- $= \sum_{k} \{x_k \sum_{\ell} p_{X,Y}(x_k, y_{\ell})\} + \sum_{\ell} \{y_{\ell} \sum_{k} p_{X,Y}(x_k, y_{\ell})\}$
- $= \sum_k \{x_k p_X(x_k)\} + \sum_{\ell} \{y_{\ell} p_Y(y_{\ell})\}$
- $= E[X] + E[Y]$.

NOTE : ^X and ^Y need not be independent !

EXERCISE :

Probability mass function $p_{X,Y}(x, y)$

	$y=6$	$y=8$	$y=10$	$\parallel p_X(x)$
$x=1$				
$x=2$				
$x=3$				

Show that

- $E[X] = 2$, $E[Y] = 8$, $E[XY] = 16$
- X and Y are not independent

Thus if

$$
E[XY] = E[X] E[Y],
$$

then it does not necessarily follow that X and Y are independent!

Variance and Standard Deviation

Let X have mean

 μ = $E[X]$.

Then the *variance* of X is

$$
Var(X) \equiv E[(X - \mu)^2] \equiv \sum_{k} (x_k - \mu)^2 p(x_k) ,
$$

which is the average weighted *square distance* from the mean.

We have

$$
Var(X) = E[X^2 - 2\mu X + \mu^2]
$$

= $E[X^2] - 2\mu E[X] + \mu^2$
= $E[X^2] - 2\mu^2 + \mu^2$
= $E[X^2] - \mu^2$.

The *standard deviation* of X is

$$
\sigma(X) \;\; \equiv \;\; \sqrt{Var(X)} \;\; = \;\; \sqrt{E[(X - \mu)^2]} \;\; = \;\; \sqrt{E[X^2] \; - \; \mu^2} \; .
$$

which is the average weighted *distance* from the mean.

EXAMPLE : The variance of rolling ^a die is

$$
Var(X) = \sum_{k=1}^{6} [k^2 \cdot \frac{1}{6}] - \mu^2
$$

= $\frac{1}{6} \frac{6(6+1)(2 \cdot 6 + 1)}{6} - (\frac{7}{2})^2 = \frac{35}{12}.$

The standard deviation is

$$
\sigma = \sqrt{\frac{35}{12}} \approx 1.70 \ .
$$

109

Covariance

Let X and Y be random variables with mean

$$
E[X] = \mu_X , E[Y] = \mu_Y .
$$

Then the *covariance* of X and Y is defined as

$$
Cov(X, Y) \equiv E[(X - \mu_X) (Y - \mu_Y)] = \sum_{k,\ell} (x_k - \mu_X) (y_{\ell} - \mu_Y) p(x_k, y_{\ell}).
$$

We have

$$
Cov(X, Y) = E[(X - \mu_X) (Y - \mu_Y)]
$$

= $E[XY - \mu_X Y - \mu_Y X + \mu_X \mu_Y]$
= $E[XY] - \mu_X \mu_Y - \mu_Y \mu_X + \mu_X \mu_Y$
= $E[XY] - E[X] E[Y]$.

We defined

$$
Cov(X, Y) \equiv E[(X - \mu_X) (Y - \mu_Y)]
$$

=
$$
\sum_{k,\ell} (x_k - \mu_X) (y_\ell - \mu_Y) p(x_k, y_\ell)
$$

=
$$
E[XY] - E[X] E[Y].
$$

NOTE :

 $Cov(X, Y)$ measures "concordance" or "coherence" of X and Y :

• If $X > \mu_X$ when $Y > \mu_Y$ and $X < \mu_X$ when $Y < \mu_Y$ then $Cov(X, Y) > 0$.

• If $X > \mu_X$ when $Y < \mu_Y$ and $X < \mu_X$ when $Y > \mu_Y$ then

 $Cov(X, Y) < 0$.

111

EXERCISE : Prove the following :

•
$$
Var(aX + b) = a^2 Var(X)
$$
,

•
$$
Cov(X, Y) = Cov(Y, X)
$$
,

•
$$
Cov(cX, Y) = c Cov(X, Y)
$$
,

•
$$
Cov(X, cY) = c Cov(X, Y)
$$
,

•
$$
Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)
$$
,

•
$$
Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y)
$$
.

PROPERTY :

If X and Y are independent then $Cov(X, Y) = 0$.

PROOF :

We have already shown (with $\mu_X \equiv E[X]$ and $\mu_Y \equiv E[Y]$) that

$$
Cov(X,Y) \;\; \equiv \;\; E[\;(X - \mu_X) \; (Y - \mu_Y) \;] \;\; = \;\; E[XY] \; - \; E[X] \; E[Y] \; ,
$$

and that if X and Y are *independent* then

$$
E[XY] = E[X] E[Y].
$$

from which the result follows.

EXERCISE : (already used earlier \cdots)

Show that

•
$$
E[X] = 2
$$
, $E[Y] = 8$, $E[XY] = 16$

•
$$
Cov(X,Y) = E[XY] - E[X] E[Y] = 0
$$

• X and Y are not independent

Thus if

$$
Cov(X,Y) = 0,
$$

then it does not necessarily follow that X and Y are independent!

PROPERTY :

If X and Y are *independent* then

$$
Var(X + Y) = Var(X) + Var(Y).
$$

PROOF :

We have already shown (in an exercise !) that

$$
Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y) ,
$$

and that if X and Y are *independent* then

$$
Cov(X,Y) = 0,
$$

from which the result follows.

EXERCISE :

Compute

$E[X]$, $E[Y]$, $E[X^2]$, $E[Y^2]$

 $E[XY]$, $Var(X)$, $Var(Y)$

 $Cov(X, Y)$

for

σ only probability include ratio σ $P_{A,B}(\omega, y)$					
		$y=1$	$y=2$	$y=3$	x)
$x=0$					
$x=1$					
$x=2$					
$x=3$					

Joint probability mass function $p_{\mathbf{y}}(x, y)$

EXERCISE :

Compute

$$
E[X]
$$
, $E[Y]$, $E[X^2]$, $E[Y^2]$

 $E[XY]$, $Var(X)$, $Var(Y)$

 $Cov(X, Y)$

for

	$\overline{}$	$y=2$	$y=3$	$p_X(x)$
$x=1$		1 ₂	1 ₂	
$x=2$		$\overline{18}$	$\overline{18}$	
$x=3$		$\overline{36}$	$\overline{36}$	

Joint probability mass function $p_{X,Y}(x, y)$